If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-30x+4=0
a = 7; b = -30; c = +4;
Δ = b2-4ac
Δ = -302-4·7·4
Δ = 788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{788}=\sqrt{4*197}=\sqrt{4}*\sqrt{197}=2\sqrt{197}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{197}}{2*7}=\frac{30-2\sqrt{197}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{197}}{2*7}=\frac{30+2\sqrt{197}}{14} $
| x(100-125)=x(100)-x(125) | | x−34=118 | | -100=t(-15-4.905t) | | -7(n+2)=-14–7n | | 3(4s+10)=42 | | n÷(-7);n=-21 | | 512x=38 | | 5y-3(7)=24 | | 7c-7=4c13c-10 | | (q-3)*2=4 | | 12x−4+1=−3−12x | | x+17x=130 | | x-6/5+x-4/3=8-x-2/7 | | 2x-4=12x-4 | | X+2x+4=127 | | 6(4x-9)-6=6(x-3)+48 | | 3x+60+3x=180 | | -5(1-5x)+5(-8x-)=-4x-8x | | -6=8-2p | | 2.5-0.03x=1.27 | | 2x(x+7)(2x-3)=0 | | 6+4k=5k+15 | | 3(x-4)+5=12 | | (3m×2)+(2m)=102 | | 9y+.16=13y | | 19-2.5c=34 | | 7x-4+3x=2(4x-4) | | 25=-7(x+5)+5*x | | 24x+132=3x+42 | | 7x-4=1/3(-12+9x) | | 4t+25=-3t+38 | | 3x-4=1/4(12+9x) |